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Experiments in nearly homogeneous turbulent shear flow 
with a uniform mean temperature gradient. Part 2. 

The fine structure 

By STAVROS TAVOULARIST AND STANLEY CORRSIN 
Department of Chemical Engineering, The Johns Hopkins University, Baltimore, MD 2 12 18 

(Received 22 February 1980 and in revised form 23 June 1980) 

Previous measurements in nearly homogeneous sheared turbulence with a uniform 
mean temperature gradient are here supplemented with data on the fine structure of 
the velocity and temperature fluctuation fields. The statistics of signal derivatives and 
of band-passed signals show that neither field is locally isotropic in the spectral range 
covered, possibly because of the insufficiently large turbulent Reynolds and PBclet 
numbers. Observed skewnesses of both velocity and temperature derivatives are 
explained qualitatively with the use of a kind of ‘mixing-length’ model. The flatness 
factors of the derivatives and of band-passed, high-frequency signals indicate appre- 
ciable departures from normality, consistent with the spatially ‘spotty’ fine structure. 
The temperature flatnesses are a bit larger than those of the streamwise velocity. The 
homogeneous shear flow data are compatible with measurements in turbulent boundary 
layers at comparable R, and PAo. 

1. Introduction 
In an earlier paper (Tavoularis & Corrsin 1981, hereafter referred to as I), it was 

reported that a nearly homogeneous turbulent shear flow with a nearly uniform mean 
temperature gradient is feasible. The flow field was basically the same as that of Harris, 
Graham & Corrsin (1977) with the superposition of a passive temperature field. Those 
two papers give details about the downstream evolution of the means and covariances 
of the velocity and temperature fields, and show that, away from the ‘generator’, the 
two fields develop asymptotically to an approximately self-similar region, retaining 
reasonable transverse homogeneity. Measurements included correlation functions, 
energy spectra, integral scales, microscales, and probability densities. The purpose of 
the experiment is, of course, to study turbulent transport in the absence of boundary 
effects or less drastic inhomogeneities. 

In  I, it was shown that heat transport characteristics are much like those of momen- 
tum transport, with the turbulent Prandtl number approximately 1.1, and that the 
temperature fluctuations are better correlated with the streamwise than the transverse 
velocity components. A main conclusion was that, as far as overall heat and momentum 
transport is concerned, this flow has some basic properties much like those of more 
general (inhomogeneous) turbulent shear flows. The present flow (and the one studied 
by Harris et al. 1977) has it Reynolds number RA z 160, larger than those of earlier 

t Present address: Department of Mechanical Engineering, University of Ottawa, Ottawa, 
Canada KIN 6N5. 

0022-1 120/81/4692-3450 $02.00 a 1‘381 Cmnhrirlge University Freqs 

1 2 - 2  



350 S. Taroularis and 8. Corrsin 

realizations, and comparable to values commonly encountered in laboratory studies 
of inhomogeneous turbulence. This implies that considerable resemblance in the fine- 
scale structure with those inhomogeneous flows may exist. For example, the present 
flow appears suitable for the examination of the degree of local isotropy (Kolmogorov 
1941) a t  this moderate R,. I n  particular, it is useful to know how well dissipation rates 
can be estimated from data on fewer than the full collection of terms, plus the assump- 
tion of isotropic dissipation. It would, of course, be desirable to increase RA much 
farther, but that was not feasible with the present apparatus. 

An important small-scale property of high and moderate RA turbulence is the level 
of ‘internal intermittency ’, i.e. spatial localization of the ‘fine structure’ -including 
dissipation. A quantitative measure is the flatness factor of the filtered turbulent 
velocity (Batchelor & Townsend 1949). Spatial intermittency in the streamwise 
direction is proportional to the temporal intermittency of a fixed-probe signal, through 
Taylor’s ‘frozen flow ’ approximation. Measurements of the flatness factor of the band- 
passedstreamwise velocity were reported, for example, by Sandborn (1959) for a bound- 
arylayer, byKennedy & Corrsin (1961)forafreeshearlayer,andbyKuo & Corrsin( 1971) 
for a grid turbulence and an axisymmetric jet. Similar measurements for the internal 
intermittency of the temperature fluctuation apparently have not been published. 

Signal derivatives emphasize information about the fine structures because differen- 
tiation of any Fourier component multiplies its amplitude by its wavenumber. 
Assuming that Kolmogorov’s idea about the velocity field is valid, and assuming 
(Oboukhov 1949; Corrsin 1951) that it applies to the temperature field as well, local 
isotropy should exist for all fluctuations a t  sufficiently large wavenumbers, provided 
that the turbulence Reynolds and P6clet numbers are sufficiently large. For a proper 
test of local isotropy based on derivative statistics, the effects of large scales must be 
eliminated. Large-scale effects always increase the magnitude of even moments of the 
derivatives, but they can (at least in principle) have an either positive or negative 
contribution to the odd moments. The lowest-order, non-trivial, odd moment of the 
fluctuations is the third, in normalized form the skewness factor. With the exception 
of Sdaiidzz (i = 1,2,3, not summed), all skewnesses of the velocity and temperature 
derivatives should have zero contributions from locally isotropic wavenumber ranges. A 
non-zero value of such a skewness could indicate either that local isotropy is not applic- 
able or that the large scales give a significant contribution to the derivative skewness. 

Previous experiments include measurements of some velocity and temperature 
derivatives in a variety of turbulent flows. Emphasis has been recently placed on the 
(easily measurable) skewness of the streamwise temperature derivative, which was 
found to be non-zero in turbulent jets, wakes and boundary layers (for a summary, 
see Sreenivasan & Antonia 1978). Gibson, Friehe & McConnell(l977) identified aramp- 
like large structure in the temperature signal in these flows and attributed it to the 
existence of a specific kind of large-scale ‘coherent’ structure. Sreenivasan & Antonia 
(1 978) have shown that these large-scale ramps are responsible for most of the skewness. 
A systematic dependence of XaBiax, on the mean shear aU1/ax, and the mean tempera- 
ture gradient ap/ax, was demonstrated experimentally by Sreenivasan & Tavoularis 
(1980), who showed that in homogeneous turbulence Sao,az, is non-zero only when both 
agl/8x2 and 8p/ax, are non-zero; they also confirmed the relation (Gibson et al. 1977), 
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Although it is clear by now that the temperature-derivative skewness is mainly the 
result of large-scale anisotropy, it is not obvious how this anisotropy is produced and 
maintained. I n  some fields one can attribute i t  to large quasi-two-dimensional flow 
structures, which under certain conditions have been observed in some inhomogeneous 
flows, but this provides no explanation for the observed non-zero SaBldzl in homogeneous 
shear flow, where all available data have so far shown no such structures (see I). 
A homogeneous, qualitative explanation is attempted in the next section. 

2. Derivative statistics 
The experimental arrangement and the measuring techniques have been described 

in I and, in more detail, by Tavoularis (1978). Velocity fluctuations were measured 
with hot-wires (5.0 and 2.5,um diameter) and temperature fluctuations with ‘cold 
wires’ (1.0 and 0.6prn diameter) operating at a constant current of 0.25mA. The 
streamwise derivatives were measured from temporal derivatives with the use of 
Taylor’s ‘frozen flow ’ approximation. The transverse derivatives of axial velocity 
were estimated by subtracting the signals of two parallel hot-wires, 1-25 mm long 
and 0.5mm apart, and those of temperature by subtracting the signals of two ‘cold 
wires’ roughly 0.4 and 0.8mm long and O.6mm apart minimum (the temperature- 
derivative data were obtained by extrapolating to  zero wire separation the values 
corresponding to separations between 0-6 mm and 2 mm). All derivatives were cor- 
rected for electronic noise, while the temperature derivatives were corrected for 
velocity sensitivity of the ‘ cold wires’, measured independently in the unheated flow. 
Corrections for the wire length and separation were computed following the analysis of 
Wyngaard (1968, 1969, 1971). The parallel probe data were not corrected for unequal 
frequency responses of the two wires (see Mestayer & Chambaud 1979); however, low- 
pass filtering of the two signals to identical cut-off frequencies (about 10 kHz for the 
velocity signals and 3 kHz for the temperature signals) was expected toreduce this error. 

Table 1 contains the measured mean-squared derivatives as well as the corresponding 
locally isotropic estimates (computed from ‘dissipation’ rates estimated as the im- 
balance of transport and production via equations (2) and (6) of I). These results will 
be discussed in the next section. 

Some interesting aspects of homogeneous shear flow are revealed by the skewness 
and flatness factors of various velocity and temperature derivatives,t also shown in 
table I .  A negative skewness of aul/axl is a ubiquitous feature of turbulence, perceived 
as an effect of nonlinear interactions. Here SauIiaXl z - 0.42, a value consistent with 
measurements in other turbulent flows with comparable R, (see, for example, 
Tavoularis, Bennett & Corrsin 1978). The skewnesses of aul/ax3, au3/axl, and aO/ax, 
are nearly zero, as expected because of symmetry with respect to x3. The skewness of 
&,/ax, also appears to be nearly zero; however this value should be treated with 
caution, in view of the analysis by Gibson et al. (1977), showing that Sauzlaxl is liable to 
large experimental errors. 

Of all derivative data, the least accurate are probably the ones measured with the parallel- 
wire probes, which are subject to spatial resolutlon limitations, ambiguous determination of the 
exact distance between the wires, and errors caused by unequal time constants of the two wires. 
Such errors may be present in the mean-squared values ;however, independent tests of the parallel- 
wire probes in grid-generated turbulence gave nearly zero transverse-velocity and temperature- 
derivative skewnesses, supporting the present finding that the observed skewnesses in shear flow 
c?escribe (at least qualitatively) the physical process and are not an instrumentation artefact. 
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The most intriguing results are the appreciable skewnesses of au,/ax,, a6/axl, and 
aelax,, which depart sharply from their locally isotropic estimates of zero. A brief 
review of the literature did not reveal any previous measurements of Saullaxa; the values 
of Saelaxl and Sae/ax2 were in close agreement with the boundary-layer values of 
Sreenivasan, Antonia & Danh (1977). The three skewnesses may be connected with the 
same local flow mechanism, in which case any qualitative explanation should cover 
them all. To summarize the existing information, in the absence of mean shear, Sallllaxr 
should vanish by symmetry, while Sae/azl is experimentally negligible (Sreenivasan & 
Tavoularis 1980). Sae/axl changes sign whenever arfilax, does, and Sae/ax, z 0 whenever 
@/ax, z 0. The present data confirm equation (1 ) ;  they also suggest the additional 
relations 

and 

Relation (3) is compatible with the boundary-layer data of Sreenivasan et al. (1977). 
A unified qualitative explanation of the above observations is possible with the 

following model, inspired by the ‘mixing-length’ theories (e.g. Taylor 1915; Prandtl 
1925; Nevzgljadov 1945). Consider a homogeneous shear flow with uniform, positive 
ai&/ax, and @/ax,, as in figure 1. A lump of fluid starting at  x2 = 0 (where for con- 
venience vl = 0) performs a chance lateral motion to positions with either positive or 
negative x,. If found a t  positive x,, its streamwise velocity is lower than the local mean, 
so the fluid in the lump has u1 < 0. Therefore a local stagnation region must develop on 
the upstream face of the ‘alien’ lump. This stagnation region is likely to have positive 
strain rates in the xl, x2 plane, so a fairly sharp ‘internal interface ’ develops where most 
of the u1 drop occurs. On the other hand, due to the effect of gross shear, an initially 
spherical (for simplicity) lump will assume a ‘tilted oval’ shape (in xl,  x,), so that this 
interface will be also tilted away from the x,, x3 plane. Profiles of u1 in the x1 and x, 
directions across the lump would present a sharp drop-off across the interface and, 
subsequently, a relatively gradual increase, so that u1 retains its correct average value. 
Therefore, a ramp-like structure of u1 is implied with SJdazl < 0 and Sau,laxz > 0. The 
same signs of both skewnesses are produced, if the fluid lump has migrated to slower 
flow, a t  negative x,. 

Similar explanations are possible for the temperature-derivative skewnesses. Taking 
anl/ax, > 0 and @/ax, > 0, at  positive x,, the lump of fluid has lower temperature 
than its surroundings so a sharp drop-off of 0 occurs a t  its upstream boundary. The 
interface is tilted by the shear. As a result, Saelaxl < 0 and Saelax2 > 0. When aD/lax, = 0, 
there are equal numbers of sharp drop-offs and sharp rises of both a6/axl and %/ax, 
and, consequently, Saelaxl z 0 and SaoIax2 z 0. When @/ax, = 0, there is no preference 
for increase or decrease of temperature across an internal interface, so again Sae/axl z 0 
and Saelaxz z 0. Inverting the temperature profile (@/ax, < 0) simply results in 
changing of the signs of both skewnesses, consistently with equations ( 1 )  and ( 3 ) . t  

The presented model attempts only a qualitative explanation for the algebraic signs 

t Note added in proof: Consistent with the present model, the skewnesses of all three 
temperature derivatives .were found to be negligible in the same homogeneous shear flow but 
with dominant aT//az, (Tavonlaris & Corrsin, manuscript in preparation). 



354 X. Tavoularis and X. Corrsin 

of the skewnesses. The physical mechanism for the initiation of the lump migration is 
not touchedupon. A more detailed experimental study should involve the simultaneous 
monitoring of the four derivatives, au,/ax,, au,/ax,, i%/ax,, and Mlax,, and a statistical 
analysis of the length, orientation, amplitude, and relative frequency of occurrence of 
the large strain rate sheets. Such information is not yet available; however, preliminary 
direct measurements show that 

---/(E)’(g)’ ao ao x -0.48. 
ax, ax, 

An independent estimate of this correlation coefficient from the Roo(rl, r,, 0;  0 )  iso- 
correlation contours (assuming that the family of similar ellipses of figure 14(a) in I 
includes cases with r / h  @ 1)  was -0.50. A related correlation estimated from the 
R,,(r,, r,, 0;  0 )  iso-correlation contours (figure 10, Harris et al. 1977) was 

The above results are compatible with the speculation that, with high probability, 
large excursions of the derivatives (aul/t7xl, aul/axz) and (aolax,, aolax,) occur simul- 
taneously. Furthermore, the signs of the two derivative correlations are compatible 
with the qualitative model of figure 1. 

Table 1 also contains the flatness factors of various velocity and temperature 
derivatives. All were substantially higher than 3.0 (the value for a normal random 
variable), consistent with an intermittent nature of the dissipation of the turbulent 
energy and the thermal ‘energy ’. All velocity derivative flatnesses were roughly equal 
to 7, which is also the value of FaUJaxl in a turbulent boundary layer with comparable 
RA (Ueda & Hinze 1975). 

I n  contrast, Faelaz, is about 50 yo larger than Faelax2 and Fao,aza, a difference which is 
too large to be attributed solely to measurement inaccuracies. This difference is a bit 
surprising because the increments of the F’s above 3.0 are presumably a measure of 
intermittency (Bachelor & Townsend 1949)) and it can be shown that, in a (hypo- 
thetical) homogeneous, binary (hence intermittent) scalar field, the intermittency is 
independent of direction. For a simple proof consider a two-dimensional, homogeneous 
binary scalar field (the extension to a three-dimensional scalar field is straightforward). 
The plane of the field can be completely covered with an infinite number of infinitesi- 
mally thin parallel strips, oriented in any direction. By homogeneity, the ‘line inter- 
mittency ’ (i.e. the relative length of one phase) in each direction is independent of strip 
translation; thus it is equal to the ‘area intermittency ’ (since, within each ‘thin’ strip, 
the ‘line intermittency’ is obviously equal to the ‘area intermittency ’) of the whole 
plane and, therefore, it is independent of direction. Possibly the inequality of the 3’’s of 
temperature gradient components is attributable in part to the fact that the aelax, 
field is not sharply bimodal. In  any case, the relative values agree well with boundary- 
layer data a t  comparable turbulent Reynolds and PBclet numbers (Sreenivasan et al. 
1977). 

The available measurements of Fao/az, in air (figure 2) show that it increases mono- 
tonically with R,,. Similar behaviour has been observed for Fazcllazl (see for instance Kuo 
& Corrsin 1971). For a fixed R,, FaijS/axl is appreciably larger than FaPlllax,, and this 
trend increases with increasing R,,. 
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- p ..... .:. . . ,,2:x . . ....... . . ... ..... . :.;. ... 'X.. .*,:, 

... :.:... .,. . . . . ... 
. . /.. :.: ji: . ... ..... . 

v I 

..4 

FIGUI~E 1.  Qualitative explanation of the observed non-zero 
skewnesses in homogeneous sheared turbulence. 

10' 1 0 3  104 

RA 

FIGURE 2. Flatness factors of the velocity and temperature derivatives in air flows. Fau,,az, : 
+ , present data; -- , earlier data (from Kuo & Corrsin 1971) .  FaOlax,: +, present data; 

grid turbulence (Sreenivasan et al. 1980);  G, grid turbulence (Antonia et a.Z. 1978);  a, 
boundary layer (Sreenivasan et al. 1977);  V, pipe flow (Elena, Chauve & Dumas 1977);  A, 
atmosphere (Gibson, Stegen & Williams 1970);  A, atmosphere (Friehe et al. 1975);  0 ,  jet 
(Gibson ef nl.  1977);  - - -, faired ciirvv. 
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LY LY 

FIGURE 3. Probability density functions of the temporal derivatives of the turbulent velocities 
and temperature. 0, experimental values, - - -, normal distribution; overdots indicate temporal 
derivatives. 

-10 -5 Id 

-10 -5 I d  

FIGURE 4. Computation of skewnesses as the third moments of the corresponding probability 

symmetric curves ; overdots indicate temporal derivatives. 
density functions. 0, experimental values; - - - . faired curves through the data; .... anti- 
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The temporal (or, through Taylor's approximation, spatial streamwise) derivative 
probability density functions of the turbulent velocities and the temperature are 
shown in figure 3. All depart appreciably from normality, with peaks at the origin, 
consistent with their high flatness factors. Their degrees of asymmetry are qualitatively 
consistent with the directly measured skewnesses. As a check, the third moments of the 
probability densities of &,/at and a8/at are plotted (figure 4). The areas under the two 
curves are 0.60 and 1-15, relatively close to the directly measured skewnesses, 0.42 
and 0-95. 

3. The departure from local isotropy 
Table 1 shows the percent difference between the measured values of several 

moments of the velocity and temperature derivatives and the corresponding locally 
isotropic estimates, computed from dissipation rates (see I). The 100 yo differences in 
the variances of some velocity derivatives cannot be attributed solely to measurement 
inaccuracies. The ordering of variances was roughly as follows: 

and 

Both ratios are 1.0 in isotropic turbulence. Relations ( 5 )  are comparable to measure- 
ments in other moderate R, shear flows (Champagne 1978), but no previous measure- 
ments of the ratios (4) are known. Independent estimates from the iso-correlation 
contours show even larger departure from local isotropy: 

Departures from local isotropy also are indicated by the temperature derivative 
variances. The direct measurements were 

in contrast to the isotropic value of 1.0. The two transverse temperature-derivative 
variances were,'of course, measured by a procedure different from that used for (a8/ax1)2, 
but again such differences can only in part be caused by measuring errors, mainly the 
uncertainty of corrections for the wire length and separation and the residual difference 
in the frequency responses of the two 'cold' wires. It is difficult to estimate the magni- 
tude or the direction of such errors. However, the values computed from iso-correlation 
contours, namely 

agreed qualitatively with (6). In general, there is a qualitative resemblance between ( 4 )  
a,nd (6) and between (4n)  and (60). 
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I I 

o\ 0 \-- -5 slope 

0 

0 

10-2 10-1 \ 1 
1 I 

7) kl  

FIGURE 5 .  Spectral test of local isotropy. 0, E z e ( k l ) ;  0 ,  E3Jk1) ,  
-, E&(kJ, E&(kl) (computed from Ell(kl)). 

The directly measured total 'thermal energy' (i.e. @) destruction rate was about 
30 % lower than the imbalance between production and convection of??, emphasizing 
inaccuracies in the measuring techniques, and to some extent in the idealized analytical 
approximation of the problem (see I for more details). 

Tests of the degree of local isotropy are possible through spectral analysis. One 
condition necessary for the expectation of a locally isotropic inertial range (hence 
dissipative range as well) in the turbulent energy spectrum is the existence of a range 
of wavenumbers k, satisfying the relations (Corrsin 1958) 

In  the present flow (at x l / h  = 11.0) this becomes 

0.01 < y k  4 1, (7a)  

which can be only marginally satisfied, if at all. A less restrictive condition was given 
by Bradshaw (1967) as 

( 7 b )  
107 0.03 z 7 < yk < 0.1. 
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1 .o 

0.5 

0.2 

0.1 

FIGURE 6. Coherencies of the shear-stress and of the transverse heat transport. -- 
lElzl /(EllE&; - - -, IE,,sI/(E,eEz,)*; - 1-, total shear-stress and heat transport correlatioi 
coefficients. 

A necessa,ry condition for local isotropy in the mixed inertial-viscous range (Corrsin 
1958) is 

Here (e /v)4/(dUl/dx2)  M 10, so that this condition also is not well satisfied. Analogous 
conditions can be devised for the thermal fluctuation field. 

A direct spectral test of local isotropy is given in figure 5, showing the measured one- 
dimensional spectra E,,(k,) and E3,(k,) as well as their estimate computed from the 
measured E,,(k,) with the use of the isotropic relation 

(€/V)f % di7,/dx2. (8) 

All spectra were corrected for errors due to the wire length and the cross-wire 
separation (Wyngaard 1968). It can be seen that 

and 

As estimated, there appears to be a t  most a negligible isotropic inertial range, (7a)  
or ( 7 b ) .  A Kolmogorov-type power law, 

E,,(kl) k,Q (10) 

can be fitted to the data in the narrow range 0.07 < yk, < 0.10, which is of course 
insignificant. 

The two measured transverse spectra, E2,(k,) and E33(kl),  are roughly the same for 
yk, > 0.07. Paradoxically, these spectra are lower than their locally isotropic estimates 
for nk, > 0.1. This difference may be due partially to experimental inaccuracies (for 
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instance, insufficient correction for the cross-wire separation at  high frequencies and 
errors due to difference in the frequency responses of the two hot-wires); nonetheless, 
it  is consistent with the independent measurements of the mean-squared velocity 
derivatives, equation (4), and with velocity spectra in other shear flows a t  comparable 
RA (Champagne 1978). 

The tendency towards isotropy of the small scales is indicated by the decreasing 
value of the narrow-band-passed turbulent shear stress and heat transport coherences 
(correlation coefficients) as the pass-band wavenumber increases (figure 6). The present 
results are reliable only up to wavenumbers roughly equal to one-fifth of the inverse 
Kolmogorov microscale, but the trends are clear. Both coherences are likely to be zero 
at  sufficiently high wavenumbers because of local isotropy (e.g. Corrsin 1949; Laufer 
1951). Based on figure 6, one could speculate that the temperature fluctuations depart 
more from local isotropy than do the velocity fluctuations. It may be relevant that the 
temperature derivatives are more skew than the velocity derivatives. Of course such 
a connexion is mere speculation, since velocity is a vector while temperature is a 
scalar, so exact analogies are impossible. 

4. Band-passed signal statistics 
A quantitative measure of the observed ‘internal intermittency ’ (spatially localized 

‘fine structure ’, including the energy dissipation) in high Reynolds number turbulence 
is the flatness factor of the filtered turbulent velocity (Batchelor & Townsend 1949). 
Spatial intermittency in the streamwise direction is proportional to the temporal 
intermittency of a fixed-probe signal through Taylor’s ‘frozen flow ’ approximation. 
Following the procedures of Kuo & Corrsin (197 l),  the flatness factors of the band- 
passed signals for different values of the centre frequency, 

f m  = CfHfLPt (11)  

‘ f / f m  = ( f H  -fL)/fm; (12) 

are plotted against the relative bandwidth, 

fH and f H  are, respectively, the low and high cut-off frequencies ( - 3 dB points) of the 
band-pass filter. A non-recursive, digital band-pass filter (described in the appendix) 
was used for all final measurements but some measurements were repeated using an 
analog band-pass filter for a comparison of the two techniques. 

Figure 7 shows the flatness factor Ful of the band-passed streamwise turbulent 
velocity a t  x, /h  = 11.0. For a fixed f,, Ful increases with increasing Af/fm from a value 
near 3.0 (the normal value), up to a maximum near Af/fn, = 0.7; then it decreases 
again, presumably to roughly 3.0, at sufficiently large Af/fm, which gives the full 
velocity fluctuation. For a fixed Af/fm,  Ful increases with increasing f,. The peak of 
Ful for a fixed f, seems to shift slightly to lower Af/fm as f m  increases. 

Figure 7 also shows that Ful measured with the analog filter was significantly larger 
than that measured with the digital filter, for Af/fm < 0.8. Consequently, the peak of 
the flatness factor of the analog-filtered velocity appears to benear Af/fm x 0.3 instead 
of its correct position at  Aflf , ,  x 0.7. This error is due to the non-uniform phase-shift 
of analog, band-passed signals. It must have been contained in the data of Kuo & 
Corrsin (1971), who reported peaking of ft1 near Af/fm x 0.3 in nearly isotropic 
turbulence. 
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FIGURE 7 .  Flatness factor of the band-passed streamwiss turbulent velocity. O,fm/fK = 0.09; 
0, fJfK = 0.27; 0, fm/fK = 0.45; A, f m / f K  = 0.64 (digital filter); . . ., f J f K  = 0.45 (analog 
filter) ; Kolmogorov frequency, f K  aJ(27r7) NN 11 kHz. 

The internal intermittency of turbulent fine structure can be demonstrated also by 
the increase in the flatnesses of velocity derivatives (Batchelor & Townsend 1949). 
‘Compound’ filtering, by differentiating the band-passed velocity, gives FauIaullaxl as 
plotted against Af/fm in figure 8. Obviously, a t  sufficiently large Af/fm, Fdullaxl should 
attain its full-band value, roughly 6.5. On the other hand, band-pass filtering with 
infinitely narrow bandwidth corresponds to  ‘infinite smoothing’ (see Kuo & Corrsin 
1971); for sufficiently small A flf,, the effects of differentiation (counteracting 
smoothing) must be overcome, and au,/ax, must approach normality (although 
possibly for smaller Af/f, than u1 does). The measurements seem to be consistent with 
these requirements, at least for the cases with sufficient data. A curious effect is that 
the curves for f, = 1 and 3 kHz increase monotonically with bandwidth, while that 
for f, = 5 kHz increases a t  low Af/f, to roughly 10 a t  Af/j’, N, 1.0, then decreases 
again. The available data for f, = 7 kHz are in qualitative agreement with the trends 
a t  smaller f,. 

It is plausible to expect that  the temperature fluctuation will display ‘internal 
intermittency ’ of the same character as that of the turbulent velocity, if the Reynolds 
and P6clet numbers are both large enough (Gibson & Masiello 1972). Indeed, all 
signals for the first-order temperature derivatives had a typically intermittent 
appearance (namely alternating regions of large- and small-amplitude fluctuations). 
Consistently, all corresponding flatnesses were significantly larger than 3.0. As that 
of the turbulent velocity, the int,ernal interrnittency of temperature fluctuations can 
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FIGURE 8. Flatness factor of the band-passed derivative of the streamwise 
turbulent velocity. Symbols as in figure 7. 

be quantitatively represented by the departure of the flatness Fe of the band-passed 
temperature from the normal value of 3-0. 

Figure 9 shows Fe as a function of Af/f, for two values off,. The digital band-pass 
filter was also used and the data were corrected for electronic noise and for velocity 
sensitivity of the cold wire. Fe shows the same behaviour as Ful although, quantita- 
tively, the two families of curves are distinct. For a fixed f,, Fe has a maximum at 
Af/fm between 1.0 and 2.0; it decreases monotonically on both sides of this maximum, 
and approaches 3.0 at high as well as low values of Af/fm. The position of the maximum 
is shifted to lower Aflf, with increasing f,. For the same fm and Af/f,, Fe is measurably 
larger than Fu,; considering that band-pass filtering has an effect in part similar to that 
of differentiation, the above result is consistent with the fact the full-band Fae,arl is 
larger than the full-band Faul,arl. It is displayed explicitly in figure 10. 

This work was supported by the U.S. National Science Foundation, Program on 
Atmospheric Sciences. We thank Professor Frank Champagne for helpful suggestions, 
especially with respect to our parallel probes data. 
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FIGURE 9. Flatness factor of the band-passed temperature. Symbols as in figure 7. 
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FIGURE 10. Flatness factors of the band-passed signals as functions of the mid-band frequency, 
for fixed relative bandwidth Af/f,,l = 1.0. 0, Ful; A, Fo. 
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Appendix. Digital band-pass filtering 
Accurate measurement of higher (especially of odd-order) moments of filtered 

signals requires that the signal waveform within the prescribed pass-band be preserved. 
Consequently, filters introducing zero phase shift, or a phase shift proportional to  
frequency within their pass-band, are in order. Analog filters with such properties can 
be efficiently designed only for bandwidths much smaller than the centre frequency. 
With wider bandwidths, some analog filters may in fact introduce serious errors in the 
measurements of skewness and flatness factors of a filtered signal, although possibly 
preserving the band-passed mean-squared amplitude. For example, a t  bandwidth 
to  centre frequency ratio equal to 1.5, the Krohn-Hite 330M (four-pole Butterworth) 
analog filter has a theoretical phase characteristic shown in figure 11.  Measured with 
this filter, the skewness of the band-passed temperature streamwise derivative was 
(erroneously) found to change sign for bandwidth to centre frequency ratios roughly 
between 0.5 and 2.5. 

A phase shift is a necessary consequence of the infinite interval impulse response of 
analog filters. I n  contrast, finite interval response digital filters with zero phase shift can 
be easily designed and implemented on a digital computer. The theory of digital filters 
can be found in textbooks of digital signal analysis, for example the one by Stearns 
(1 975). 

The output time history ym of a non-recursive? digital filter with zero phase shift is 
computed from the input time history xnz as 

where b,, bn are the cosine Fourier coefficients of the filter transfer function H(w) ,  
namely 

and 

n H(w)cos(nwAt)dw, n =  1 , 2  ,..., N .  

Any continuous H ( w )  can therefore be approximated within any required accuracy 
by a finite Fourier series 

IV 
B(w) = b , + 2  C b,co~(nodt).  

n = l  

For an ideal band-pass filter with transfer function 

the coefficients h,, b, should be 
(WH - W L )  At b, = 

7r 

and 

(A 7)  
sin (nw, At) - sin (nu, At) 

nn 
b, = ) n = 1 , 2  ,..., N .  

Thesr are filters whowe output does not explicitly depend on the past output vahws. 
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FIGURE 11. Theoretical phase characteristic of a four-pole Butterworth band-pass filter. - a - ,  

high-pass section ; - - - , low-pass section; --, combined band-pass; AJ/jm = 1.5. 

‘The truncation of the Fourier series (A 4) to a finite number of terms introduces the 
‘Gibbs phenomenon ’, namely an oscillatory form of the transfer function estimate. 
Smooth transfer functions can be obtained with the use of a ‘window function’ wn, in 
which case expressions (A 1) and (A 4) are modified into 

and 
N 

n = l  
B(o) = b,+2 C b,w,cos(nwAt). (A 9) 

The ‘ hanning window ’ 

w, = 1 2 (1 + c o s y )  

was used in the present study. 
The transfer function estimate B(w) is periodic with period r / A t .  To avoid aliasing, 

the sampling time At should be less than r / w H  and all frequencies above the high- 
frequency cut-off fH = uH/% should be removed with the use of an analog low-pass 
filter before the digital data processing. The required number of terms N generally 
depends on the bandwidth and the required ‘sharpness’ of the filter. 
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FIGURE 12. Transfer function of a digital, zero phase-shift, band-pass filter. 0, Af/f,,, = 0.05, 
N = 50; A, Af/f,,, = 0.6, N = 50; 0 ,  Af/fm = 1.2, N =; 25; 0, Af/fm = 2.5, N = 50; 
0, Af/ fn8  = 5.0, N = 150. 

Figure 12 shows the amplitude characteristics of the digital filters used in the 
present study. The sampling time At was 1/(2.5fH) and the number of terms N for 
each bandwidth was the lowest one producing reasonably high slopes as well as side 
lobes with maxima below -20dB. The first side lobes (corresponding to negative 
values of the transfer function estimate @(w)) are also shown in figure 12. 
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